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Abstract

In this work, certain aspects of the structure of the overlapping groups of neurons
encoding specific signals are examined. Individual neurons are assumed to respond
stochastically to input signal. Identification of a particular signal is assumed to
result from the aggregate activity of a group of neurons, which we call information
pathway. Conditions for definite response and for non-interference of pathways are
derived. These conditions constrain the response properties of individual neurons
and the allowed overlap among pathways. Under these constrains, and under the
simplifying assumption that all pathways have similar structure, the information
capacity of the system is derived. Furthermore, it is shown that there is a definite
advantage in the information capacity if pathway neurons are not localized but
rather dispersed among the neuron assembly.

1 Introduction

When we view the world around us we perceive objects free of analog noise. This sug-
gests that somewhere in the brain there exists definitive information about the existence
of a signal. Nevertheless, when one records electrophysiological data from pyramidal
neurons in mice, the response of these neurons is nothing like definitive and noise free
[1], [2]. Upon the repeated presentation of orientation gratings on mammals, there are
two important observations that need to be stressed. One is that V1 neurons some-
times respond to a signal while some other times does not respond to the exact same
signal, and the other is that the frequency of response to the preferred orientation is
only marginally higher than the frequency of response to other nearby orientations, that
can nevertheless be distinguished by the animal.

A reasonable question to ask is where the definitive information about a signal is
located. There has been some speculation that there exist neurons (grandmother cells)
that respond reliably to particular objects [3]. These cells are expected to receive unre-
liable input from many cells and integrate this into a definite response. However such
cells have not been spotted in early visual areas like V1 and they are elusive even in
higher areas. Hence one is led to believe that definitive information in V1 is carried
by a group of (unreliable) neurons whose aggregate output responds reliably to a given
stimulus (e.g. an orientation grating). Let us call this an information pathway.
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The neurons giving rise to an information pathway are in general not adjacent. Since
objects detected are in general extended, information is needed from an extended V1
area so as to be able to recognize an object. However, there are also position dependent
local features that constitute signals and need to be encoded. In such features, neurons
that are geometrically close should form a group that carries feature information.

The object of this work is to try to understand through the use of simplified models
some basic principles underlying information encoding in groups of neurons, that are
generally probabilistically responding to a stimulus and form overlaping sets. Two con-
ditions that have to be satisfied and will be examined here are the following: i) The
encoding must be definitive, that is the probability of an information pathway to be
active when a stimulus is present should be close to 1 while the probability should be
close to 0 when the pathway stimulus is not present. ii) There should be no significant
interference among overlapping pathways.e

In this work, the implications of conditions i) and ii) on the pathway overlap will be
examined. Furthermore the information capacity of a group of neurons will be examined
for three different architectures of the information pathways.

2 Definitely Responding Neurons

One neuron definite encoding: Let us assume that we have a set of N neurons responding
definitely, and we want to encode as many signals as possible. To encode one signal Si,
i = 1 . . . N on each neuron Ni is rather suboptimal since at most we can encode N
signals overall. Robustness is also an issue since if one neuron dies, one signal remains
unencoded. Hence if we define the information loss (IL) as the number of signals that
remain unencoded divided by the number of signals that was encoded originally, one
neuron loss causes information loss IL = 1/N . The neuron firing required for a signal
detection is one neuron firing. Hence the firing per bit of information (FPB) is FPB =
1/log2N .

k neuron definite encoding: It is possible to increase the information encoded in our
N neurons by using sets of k neurons to encode one signal. Since there are

(N
k

)
groups

of k elements it is possible to encode
(N
k

)
signals. If N >> k this number is of order Nk

which is generally much larger than N .
However there is one drawback in this encoding. To figure out the signal encoded

from the firing pattern of the N neurons it is not sufficient to have access to the firing
of the k neurons that respond to the signal. Information is needed about the neurons
that are not firing as well so as to make sure that there is no superset of the k neurons
firing that encodes a different signal. Hence a subsequent neuron that needs to process
the signal information needs to have access to the full set of N neurons.

There is also an issue with robustness. If one neuron dies it gives no output and this
corrupts the encoding of all signals in whose k-neuron responding set is the dead neuron.
Hence

( N
k−1
)

signals are encoded incorrectly. This gives an information loss IL = k
N−k+1 .

For N >> k this is of order k/N . This is more information loss than in the one neuron
definite encoding.
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The firing necessary to detect one signal in this case is the firing of k neurons,
however the detection is from a pool of Nk signals for N >> k. Hence the firing per bit
of information is in this case FPB = k

log2Nk = 1
N which is the same as before.

This is not of course a realistic encoding of information in neurons, however it shows
one great advantage that motivates the formation of information pathways. This is the
vast number of possible subsets of the N neurons that may carry information. Nev-
ertheless, there are issues to be resolved. One such issue is the issue of access of the
subsequent neuron to the full set of N neurons. Another issue is the issue of information
loss upon death of a neuron.

3 Overlapping Information Pathways with Bimodal Probabilistically Re-
sponding Neurons and No Spontaneous Firing

Two overlapping information pathways: Let us suppose that we have two information
pathways of n1, n2 neurons each, and suppose that there are two distinct signals S1, S2
that activates them respectively. Here it is assumed that each neuron in pathway i has
probability pi of firing if Si is present and probability 0 of firing if Si is not present.
The two pathways are assumed to have an overlap of n12 neurons. To decide whether
a pathway is active or not, we need to set up a threshold Ki on the number of active
neurons. If in pathway i more than Ki neurons are firing, then the pathway is considered
active, otherwise it is considered inactive.

Let us now consider the condition for pathway i to be active given that Si is present.
Since the neurons are bimodal, the probability of more than Ki neurons firing is given
by the binomial distribution

P (Fi > Ki|Si) =
∑
k>Ki

(
ni
k

)
pki q

ni−k
i (1)

where qi = 1− pi is the probability of a neuron not firing when the corresponding signal
Si is present. This probability is the probability pathway i is active when Si is present.

To facilitate the calculation we are going to use the De Moivre-Laplace theorem to
approximate the binomial distribution with the normal distribution. This approximation
is considered to be good for ni > 30 and for a range of values of k in the sum that is of
order ni so as to avoid discreteness error. The De Moivre-Laplace theorem tells us that

P (Fi > Ki|Si) ≈
1√
2π

∫ ∞
Ki−nipi√

nipiqi

e−x
2/2dx ≡ 1− Φ(

Ki − nipi√
nipiqi

) (2)

where Φ(z) is the normal cumulative distribution function.
Let us now focus on the condition of definite response (i) of the pathway to signal

Si. Like in any probabilistic response system we have to set a level of certainty above
which we consider the system to give a definite response. Let us call this level 1− ε. The
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condition of definite response of information pathways Si assumes the form

Φ(
Ki − nipi√
nipiqi

) < ε (3)

Condition (3) admits the following interpretation: nipi is the expected number of neurons
that are firing in pathway i. Condition (3) is satisfied when the expected number of firing
neurons is much larger (in units of standard deviation

√
nipiqi) than the threshold Ki.

The condition of no interference between the overlapping pathways S1, S2 is a little
bit more tricky since one needs to carefully set the thresholds so as to achieve maximal
separability of the pathways. The probability of Sj , j 6= i, to cause activity in pathway
i is given by

P (Fi > Ki|Sj) =
∑
k>Ki

(
nij
k

)
pkj q

nij−k
j ≈ 1− Φ(

Ki − nijpj√
nijpjqj

) (4)

This probability has to be kept low at confidence interval ε, and this leads to the condition

Φ(
Ki − nijpj√
nijpjqj

) > 1− ε (5)

The interpretation of this equation is that the expected number of firing neurons in the
overlap (nijpj) under presentation of signal Sj is much smaller than the threshold Ki of
pathway i.

The threshold Ki should be such that the expected number of firing neurons upon
presentation of signal Si is well above Ki, while the expected number of firing neurons in
pathway i upon presentation of signal Sj due to the pathway intersection is well below
Ki. One could take Ki to be the midpoint of the two expected numbers of firing neurons,
however this would ignore possible differences in the standard deviation of the number
of firing neurons in the two cases. Instead one should take a weighted average of the two
expected numbers by the standard deviations as threshold. This is given by

Ki =
nipi
√
nijpjqj + nijpj

√
nipiqi

√
nijpjqj +

√
nipiqi

. (6)

Suppose now that we set ε = 0.01. Then the condition of definite response (3) can
be solved by using the normal cumulative distribution table to give

Ki − nipi√
nipiqi

< −2.33. (7)

Furthermore the condition of no interference gives similarly

Ki − nijpj√
nijpjqj

> 2.33 (8)
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Setting the threshold to the optimal value (6) the conditions (7) and (8) collapse to the
single condition

nipi − nijpj√
nijpjqj +

√
nipiqi

> 2.33 (9)

Many overlapping pathways: In this case the condition of definite response is the
same for each pathway, however the condition of no interference becomes more compli-
cated since there are now many possible overlaps. This obscures the optimal choise of
threshold for each pathway since now the optimal threshold of a pathway depends on
firing probabilities and overlapping sets of all overlapping pathways. This suggests that
there must be some uniformity in the expected number of firing neurons in the overlap
ping sets so as to have a possible choise of thresholds that avoid interference.

To proceed further, we will supress the diversity in the neuron number, firing prob-
abilities and overlapping set size and consider a simplified model in which all pathways
have the same number (n) of neurons, and the maximum number of neurons in the
overlap of two pathways is m < n. Furthermore the firing probability of each neuron in
a pathway under presentation of the signal associated with the pathway is taken to be
constant (p). In this case the optimal threshold for all pathways is given by

K =
np
√
m+mp

√
n√

m+
√
n

(10)

The conditions of definite response and no interference (7) and (8) now collapse to the
single condition

(
√
n−
√
m)

√
p

q
> 2.33 (11)

To have maximum number of encoding pathways it is necessary to increase the
overlap m to a maximum value m0, without violating condition (11). This is achieved
when

m0 = [(
√
n− 2.33

√
q/p)2] (12)

where the brackets here denote integer part.
In Fig.1 we see how the value of the maximum overlap m0 varies as a function of the

probability of neuronal response p for a fixed number n = 1000 of neurons in a pathway.
From this graph we see that already at p = 0.06 we have a possible 50% overlap. Hence
we can say that for maximal number of noninterferring definitely responding pathways
of size n = 1000, even for very low probabilities of response high overlaps are possible.

One important aspect of these probabilistic overlapping pathways is that a subse-
quent neuron does not need the full set of neurons to decode the signal, like in the case
of k neuron definite encoding, since there are no super-pathways that contain smaller
information pathways inside. If a subsequent neuron is connected to a pathway and
thresholds the overall input at the optimal threshold then this neuron has the informa-
tion the pathway carries. Hence such a reading system is implementable in real neural
networks.
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Figure 1: The pathway overlap threshold m0 is plotted against the probability p of a
neuron in a pathway responding to its signal. Here the number of neurons in the pathway
is taken to be n = 1000.

4 Overlapping Pathways in the Presence of Spontaneous Firing

Let us now suppose that each pathway has n bimodal neurons and that a pair of pathways
has m neuron overlap, as before. In this case we will assume that there is a spontaneous
probability of firing p0 for a neuron not participating in a pathway whose signal is present.
There is also a stimulated probability of firing p when the neuron is in a pathway whose
associated signal is present.

The spontaneous firing may arise in many ways. It may be for example built in the
network so as to maintain dynamic equilibrium. After all, excess firing will generate too
much input to the network and this may lead to seizure if network control fails, while
not enaugh firing may result in too little input to the network leading to global silens-
ing. Another source of spontaneous firing may be the parallel operation of overlapping
pathways. It is quite possible that a neuron belongs not only to the pair of pathways
considered here, but also to a third pathway that may or may not be active in parallel
to our pair of pathways. It is quite possible that both sources of spontaneous firing
mentioned exist and cooperate in the brain.

A third source for the ”spontaneous” probability of firing p0 may be simply the
signal to the second pathway that is causing partial response to the first pathway. This
may happen for example if the signals are close orientation gratings. In this case both
orientation gratings generate response to the neurons of a pathway, however the preferred
orientation generates response with higher probability p than the nearby orientation
which generates a response with probability p0. In this case we will refer to the pathways
as close signal pathways and to the difference dp = p− p0 as the probability resolution
of the two pathways.

As before, there is a threshold K for the number of active neurons in a pathway,
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above which the pathway is considered active. The condition of definite response again
assumes the form

Φ(
K − np
√
npq

) < ε, (13)

however in this case there is one further condition, the condition of non spontaneous
response which tells us that

P (Fi > K|NoSignal) ≈ 1− Φ(
K − np0√
np0q0

) < ε. (14)

Fortunately, this condition is weaker than the non-interference condition hence it is
automatically imposed.

The non-interference condition in this case assumes the form

P (Fi > K|Sj) =
∑

k,l,k+l>K

(
m

l

)
plqm−l

(
n−m
k

)
pk0q

n−m−k
0 < ε. (15)

It is not too difficult to show, following a proof similar to the De Moivre-Laplace theorem,
that in the limit n >> m, m >> 1, P (Fi > K|Sj) can pe approximated by

P (Fi > K|Sj) ≈ 1− Φ(
K − (n−m)p0 −mp√

(n−m)p0q0 +mpq
). (16)

This leads to the non-interference condition

Φ(
K − (n−m)p0 −mp√

(n−m)p0q0 +mpq
) > 1− ε (17)

In this case, the optimal choice of threshold is

K =
np
√

(n−m)p0q0 +mpq + ((n−m)p0 +mp)
√
npq√

(n−m)p0q0 +mpq +
√
npq

(18)

As before, setting the confidence limit ε = 0.01 the two conditions collapse to the
condition

(n−m)(p− p0)√
(n−m)p0q0 +mpq +

√
npq

> 2.33. (19)

It is this condition that determines the maximum allowed overlapm0 of distinct pathways
in the presence of spontaneous firing.

This is also the condition that determines the maximal allowed overlap of two close
signal pathways at probability resolution dp = p − p0. The maximum possible value of
m, which we call m0, for which condition (19) is satisfied is shown in Fig.2 as a function
of p for various values of dp. From this graph we see that higher overlaps are favored
for both high and low response probability p. Since higher overlaps translate to higher
information capacity, one would expect that if information capacity is an important
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Figure 2: The overlap threshold m0 is plotted against the probability of response to
signal p for various values of the probability resolution dp = p − p0. Here the pathway
neuron number is n = 1000

parameter in the operation of information pathways, then these would operate at either
p ≈ 0 or at p ≈ 1.

The mode of operation p ≈ 0 appears to be problematic, even though it has a definite
energetic advantage over higher response probabilities. First of all p has a low bound
p0+dp determined by the spontaneous firing probability p0 and the necessary probability
resolution. If p0 is large due to network steady state requirements (e.g. non-silensing
of the network) or due to parallel operation of many overlapping pathways, then it is
not possible to operate in this regime. Another problem is that all pathways have to
operate at low p to avoid pathway interference. It may be true that in this model we
have assumed, for simplicity, that all pathways have a common response probability, but
in real brain networks this is not likely to be the case.

The mode of operation p ≈ 1 seems to be more feasible, however it is more energet-
ically demanding. This mode of operation is favored if information capacity is a major
concern, at least in the case all pathways have the same p, p0. However, in real brain
networks p, p0 are not expected to be constant since the demand of information process-
ing as well as the specific nature of the signals encoded may excercise control over the
response probabilities. This suggests that the allowed pathway overlaps m0 have to be
such that condition (19) is satisfied for all p, p0 at a given probability resolution dp.
This happens at the minima of the curves in Fig.2.

5 Number of Signals Encoded

Let us now turn more closely to the question of how many signals can be encoded
independently on a set of N neurons given that the pathway size is n and the maximal
overlap allowed is m0 < n.
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5.1 2D Dense Neighbourhood Pathway Model

In this model we are going to assume that the neurons are irregularly and randomly
placed on a surface modeling a cortex layer. We will furthermore assume that pathways
are constructed by geometrically adjascent neurons placed closest together (i.e. they
form circles), hence the number of neurons in this model is proportional to the surface
area that they occupy. We will assign a surface density d to the number of neurons per
unit area. Hence the areas associated to N , n and to the overlap m are AN = N/d,
An = n/d and Am = m/d. Since the pathways are circular, we can associate a radius
Rn =

√
An/π =

√
n/πd. The overlap area Am is the overlap of two circles, and the size

of this area is fully determined by the radius of the pathway circles and the distance of
the centers of the pathways. In fact it is easy to show that

Am = 2R2
nsin

−1(

√
R2
n −D2/4

Rn
)−D

√
R2
n −D2/4. (20)

Inverting relation (20) it is possible to determine the minimum distance Dm0 allowed
for a maximum overlap Am0 that corresponds to m0 neurons. Defining the regularized
distances with respect to the density R̂n = Rn

√
d, D̂ = D

√
d, (20) assumes the form

m = 2
n

π
sin−1(

√
n/π − D̂2/4√

n/π
)− D̂

√
n/π − D̂2/4. (21)

Consider now the question of how many pathways of size n fit in N neurons if the
maximal overlap allowed is m0 neurons. This question corresponds to the question of
how many circles of radius Rn fit within an area AN of neurons if the nearest distance
of their centers allowed is Dm0 .

This is a question that can be answered easily if we ignore insignificant edge effects
associated with the exact shape of the area AN . For closest packing, the centers of the
pathway circles form a triangular lattice of edge Dm0 , and the area of the triangular cell
of the lattice is Ac = D2

m0

√
3/4. Hence we get that the number of pathways Np is

Np =
AN
2Ac

=
2N√

3dD2
m0

=
2N√
3D̂2

m0

(22)

From equation (22) we see that the number of pathways Np increases linearly with
N , but with a proportionality coefficient that depends on both n,m0.

The graph of this proportionality coefficient for maximum overlap m0 is depicted in
Fig.3 for n = 1000 pathway neurons. As can be seen, Np/N increases with increasing
m0, however only for very large overlaps it becomes comparable to 1.

5.2 3D Dense Neighbourhood Pathway Model

In this model we are going to assume that the neurons are irregularly and randomly
placed in three dimensions, essentially considering the cortical layer to be thick, hence
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Figure 3: The pathway fraction Np/N is plotted against the maximum number of overlap
neurons m0. Here the number of neurons in the pathway is taken to be n = 1000.

allowing three dimensional structure. We will also assume, as in the 2D model, that path-
ways are constructed by adjascent neurons placed closest together, forming overlapping
spheres that are closest packed at the overlap permitted. Hence the centers of the path-
ways form a closest packed sphere lattice (hexagonal close packed or cubic close packed
lattice). In this case a volume neuron density d associates volumes with neuron numbers,
giving VN = N/d for the volume of the aggregate of neurons, Vn = n/d for the volume
of the neurons in a pathway and Vm = m/d for the volume of the neurons in the overlap
of two pathways. The radius of the pathway sphere is Rn = 3

√
3Vn/4π = 3

√
3n/4πd. The

overlap volume of two overlapping spheres distance D apart is given by

Vm =
1

12
π(4Rn +D)(2Rn −D)2. (23)

Regularizing by setting R̂n = Rn
3
√
d, D̂ = D 3

√
d, (23) assumes the form

m =
1

12
π(4 3

√
3n/4π + D̂)(2 3

√
3n/4π − D̂)2. (24)

Suppose now that m0 is the maximum allowed overlap, so that pathways do not
confuse each other. Inverting numerically equation (24) it is possible to obtain the
minimum distance Dm0 allowed between the centers of the pathways. The maximum
number of pathways that can be packed at this minimum distance is equal to the number
of auxiliary hard spheres of radius Dm0/2 that can be packed in the volume VN . A
theorem of Gauss tells us that the maximum fraction of volume that can be occupied
by closely packed hard spheres is π/3

√
2. Hence the volume of the auxiliary spheres is

Vaux = πVN
3
√
2

and the number of them is the quotient of Vaux by the hard sphere volume
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VHS =
πD3

m0
6 . Since this is the number of pathways we get that

Np =
Vaux
VHS

=
VN
√

2

D3
m0

=
N
√

2

D̂3
m0

(25)

Equations (24,25) implicitly determine the number of pathways in terms of the num-
ber of pathway neurons n and the maximum allowed number of overlap neurons m0.
Again, the number of pathways increases linearly in the number of neurons N , but with
a higher proportionality coefficient that in the 2d case, as can be seen in Fig.3.

5.3 Random Selection Model

In the previous models described the information pathways formed were local in the
sense that neurons in a pathway were neighbouring neurons. They were also dense in
the sense that all neurons within a radius from the pathway center are in the pathway.
Both these restrictions limit severely the number of pathways that are non interfering.
To understand better these limitations suppose the pathway neurons are chosen from
the full agregate . Suppose that we are given a set of N neurons, and that each neuron is
chosen at random with probability p = n/N to participate in a particular pathway. This
does not quite fix the pathway neurons to be n, but rather demands the expectation
value of the number of pathway neurons to be n. Lets say that the non-interference
condition allows m0 neuron overlaps among distinct pathways and that activation of a
pathway by coactivation of two other pathways is a rare event and can be ignored.

Since the overlap neuron number m determines whether there exists interference
among pathways we need to calculate the overlap probability P (O = m) where O is
the two pathway overlap random variable. To do this let us suppose that we have fixed
the n neurons of pathway Pi, and that we count the ways we can choose the neurons of
pathway Pj so as to have m neuron overlap. This number of ways is

(n
m

)(N−m
n−m

)
. Hence

the probability of m overlap in the pathways Pi, Pj is

P (O = m) =

(n
m

)(N−n
n−m

)(N
n

) (26)

Suppose now that we work in the large N limit, that is assume N >> n. Then we
can apply Stirling’s formula to get the N dependence of the overlap probability. Doing
this we get that

P (O = m) =
1

m!

(
n!

(n−m)!

)2

N−m. (27)

The importance of this formula is that P (O = m) ∼ N−m. Suppose now that the
condition of no interference is O < m0. Then the probability of interference of the two
pathways is

P (O ≥ m0) =
n∑

m=m0

P (O = m) ∼ 1

m0!

(
n!

(n−m0)!

)2

N−m0 . (28)
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To determine the number of non-interfering pathways Np in this model we have to
set a level of tolerance since the pathway overlap is stochastic. A rather strict tolerance
level, that guarrantees that the pathways are operating properly, is to demand that it is
unlikely to have one interfering pair per pathway. This is equivalent to saying that the
expected number of interfering pairs is a small ε fraction of the number of pathways.

0.5Np(Np − 1)P (O ≥ m0) < εNp. (29)

This means that the allowed number of non-interfering pathways is

Np ∼ 2εm0!

(
(n−m0)!

n!

)2

Nm0 (30)

Observe that the situation here is very different from the situation in either the 2D
or the 3D dense neighbourhood pathway models. Here the number of non-interfering
pathways increases like a power of the number of neurons, Np ∼ Nm0 , while in either of
the geometric models it increases linearly in the number of neurons, Np ∼ N . Hence the
random selection model can store much more information than the dense neighbourhood
pathway models, suggesting that the brain architecture may drop locality when there
are many distinct signals to be encoded. Nevertheless there is also a penalty to pay.
This model for pathway construction is not appropriate when topographical mapping
has to be maintained. Since this happens in the early visual areas, this model is not
appropriate for pathways in V1. What we need in V1 is a model that will take the
advantages of dilute pathways and combine them with the locality of the pathways in
the dense neighbourhood pathway models. Such a model is the Sharp Cutoff Constant
Density Pathway Model.

6 Sharp Cutoff Constant Density Pathway Model

6.1 2D case

In this model we will assume that the n pathway neurons are uniformly distributed
within a distance Rn from the pathway center. Two densities are associated to this
model. One is the neuron density d = N/Area, and the other is the pathway neuron
density dn = n/πR2

n. In terms of these densities the number Nn of neurons within radius
Rn from the pathway center is Nn = πR2

nd > n. The probability p that a neuron within
radius Rn from the pathway center belongs to the pathway is p = dn/d = n/Nn. We
will also assume that the maximum overlap permitted between pathways is m0 neurons,
which is determined by the response properties of the neurons.

If the pathways form a closest packed lattice as in the 2D geometric model, then the
adjacent pathway overlap area is again given by (20). However the expected number of
overlap neurons m is modified by the ratio of the two densities:

m =

2
n

π
sin−1


√
n/π − D̂2/4√

n/π

− D̂√n/π − D̂2/4

 n

Nn
(31)
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Here R̂n = Rn
√
dn, and D̂ = D

√
dn are again the appropriate dimensionless radius and

pathway center distance. Solving implicitly (31) for D̂ after substituting the maximum
overlap m0 for m, gives us the minimum pathway distance D̂m0 .

If D̂m0 is different from zero, this is sufficient to give us the maximum number of
pathways that can be packed in our neuron area to be

NP = Area/2Atriang.cell = 2N/
√

3D̂2
m0
. (32)

In this case the maximum number of pathways NP increases linearly with the number
of neurons present.

The situation can change when D̂m0 = 0. From (31) it is easy to see that this
happens when

m0 ≥ n2/Nn. (33)

In this case two pathways can operate without interference at any distance D. However
if too many overlapping pathways are present some pairs will interfere. In this case it
is unlikely to maintain closest packed structure for the pathway centers. Let us denote
by N̂I the number of interfering pairs. As in the Random Selection Model, we will
demand that the expected number of interfering pairs is small compared to the number
of pathways,

EN̂I < Npε. (34)

Let us consider now two adjacent pathways. The probability pb that a random neuron
belongs to the overlap of these pathways is given by

pb =
Am
Area

p2 =
m

N
p2 (35)

where Am is the overlap area and Area is the area of all the neurons. The ratio Am/Area
represents the probability that the neuron picked is in the overlap area, and p2 represents
the probability that it belongs to both pathways.

Consider the interference probability Pm0(D) which is the probability that the overlap
of two adjacent pathways is greater than or equal to m0. Then

Pm0(D) =
∑

m≥m0

(
N

m

)
pmb q

N−m
b . (36)

Since in the regime we are working pb is small, we can apply the Poisson approximation
to the binomial distribution and we have

Pm0(D) ≈
∑

m≥m0

(Npb)
m

m!
e−Npb . (37)

The ratio of two successive terms in this sum is given by

ratio =

(Npb)
m+1

(m+1)! e
−Npb

(Npb)m

m! e−Npb
=

Npb
(m+ 1)

. (38)
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Recall that we are in the regime where the expected number of overlap neurons Npb,
when two pathways overlap completely, is less than m0, so as to have D̂m0 = 0. In our
case we do not have complete overlap, hence the condition Npb << m0 is rather a mild
condition to impose. Hence in Pm0(D) we can keep only the first term to get

Pm0(D) ≈ (Npb)
m0

m0!
e−Npb (39)

Using now (36) and (20) it is easy to show that

Npb =
2

π

sin−1
√

1−
(
D

2Rn

)2

−
(
D

2Rn

)√
1−

(
D

2Rn

)2
 n2

Nn
≡ f(D)

n2

Nn
. (40)

Here f(D) = Am/πR
2
n is a geometric factor that is valued in the interval [0, 1] and is

zero when D > 2Rn. Applying Stirling’s formula on the factorial in (39) we get

Pm0(D) ≈ 1√
2πm0

e−m0(r(D)−ln(r(D))−1) (41)

where r(D) = n2f(D)/Nnm0 < 1 in our regime of interest. Noticing that the function
g(r) = r− ln(r)− 1 is decreasing for r < 1 and r(1) = 0 we get that g(r(D)) > 0. Hence
we have a negative exponent of m0 in the pathway interference probability.

If we assume that we have random positioning of the pathways, then the probability
that two pathways being in [D,D + dD] apart is

Pp(D)dD =
2πDdD

Area
. (42)

This means that the confusion probability Pm0 which is now independent of the pathway
distance D is

Pm0 =

∫ 2Rn

0
Pm0(D)Pp(D)dD (43)

This is expected to retain the exponential behaviour in m0 with an effective coefficient
g(rmax) where rmax = max{r(D)} = n2/Nnm0. In fact it is easy to see that

Pm0(D) <
1√

2πm0
e−m0(rmax−ln(rmax)−1), (44)

hence we get the bound

Pm0 <
1√

2πm0
e−m0(rmax−ln(rmax)−1) 4Nn

N
. (45)

In this case the tolerance condition (34) assumes the form

Np(Np − 1)

2
Pm0 < εNp ≈ ε(Np − 1) (46)
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This is guarranteed if

Np
1√

2πm0
e−m0(rmax−ln(rmax)−1) 2Nn

N
< ε, (47)

hence

Np < ε
N

2Nn

√
2πm0e

m0(rmax−ln(rmax)−1) (48)

This model has a linear dependence of the number of pathways Np on the number
of neurons N , however there is an exponential dependence of the maximum pathway
number on the maximum overlap m0. This means that once we have dilute enaugh
pathways, so that the condition n ≤

√
m0Nn is satisfied, then the number of allowed,

non-interfering pathways, increases rapidly. Furthermore, once the diluteness of the
pathways is regulated in the brain, pathways can be randomly placed in almost arbitrar-
ily large numbers without significant interference. In practice however there probably
are other restrictions, not to be studied here, that limit the number of pathways allowed,
like for example the ability of the brain to adress these pathways.

6.2 3D Case

The situation in 3D differs only by the geometric factors. In this case

m =

[
1

12
π(4 3

√
3n/4π + D̂)(2 3

√
3n/4π − D̂)2

]
n

Nn
(49)

Here R̂n = Rn
3
√
dn, and C = D 3

√
dn are again the appropriate dimensionless radius and

pathway center distance. Solving implicitly (49) for D̂ after substituting m0 for m gives
us D̂min. As in the 3D Dense Neighbourhood Pathway Model, the number of pathways
that can be packed at this closest distance is

Np =
N
√

2

D̂3
min

(50)

The situation is again expected to change when D̂min = 0. This happens, as in the
2D model, when m0 > n2/Nn. In this case

Npb = N
Vm
Vn

p2 = (1 +
D

4Rn
)(1− D

2Rn
)2
n2

Nn
≡ f(D)

n2

Nn
(51)

Again the bound for Pm0(D) is given by (44), as in the 2D case. There is a difference
however in the bound of Pm0 for disordered pathways because now

Pp(D)dD =
4πD2dD

Area
. (52)

The new 3D bound is given by

Np < ε
N

4Nn

√
2πm0e

m0(rmax−ln(rmax)−1), (53)

where rmax is as in the 2D case.
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7 Interneuron Functionally Connected Groups in Mice V1

Let us try to make contact of the above calculations with two photon data collected
from the V1 area of adult mice [5]. We will make the assumption that the set of
pyramidal neurons connected to an interneuron forms an information pathway. This
is not a universally accepted assumption, since there are many possibilities on the way
the interneurons excert control over the network. One possibility, for example, is that
the activity created on a pathway through a signal presentation is dispersed in the whole
network and then the interneurons excert control locally over the network to quench the
extra activity. Nevertheless, we believe that this type of control is very non-specific for
information processing. If quenching of activity is demanded on one pathway and not on
another, this cannot be done. There is furthermore evidence that neurons connected to
a particular interneuron tend to have similar tuning properties [5], which is compatible
with the fact that they encode similar information. Hence we will proceed based on this
assumption, which we will check anyway for internal consistency.

Since the data that we have are limited in size and it seems that there is no universal
profile for the decay of pathway neuron density with distance from the interneuron (taken
to be the pathway center), we will utilize the sharp cutoff constant density pathway
model. Although the data we have come from a planar recording, of thickness dt ≈ 20µm
(determined by the size of neurons and not by the optical properties of the microscope),
we will use the 3D case, since there is no reason to believe that there is a planar structure
in the neuron functional connections. To do this we will extrapolate the planar data that
we have from the recording area of thickness dt to a sphere around the interneuron of
radius Rn = 250µm which is going to be our pathway cutoff radius. This value of the
cutoff radius is motivated by the decay profile of the planar interneuron connectivity with
distance, and it refers to functional connectivity only. It is certainly a rough estimate,
however it is expected to improve in the future by the inclusion of more extensive data
sets. Note that the interneuron-connected pyramidal density dn inside the cutoff radius
Rn is taken to be the same as in the thickened planar recording.

In our dataset the field of view allows the analysis of 5 interneurons. The real overlap
matrix is the following: Since each interneuron is placed in a different position in our

Table 1: Interneuron Pathway Overlap Data

Int. No. 1 2 3 4 5

1 73 32 21 42 13
2 32 72 42 52 31
3 21 42 50 44 27
4 42 52 44 81 34
5 13 31 27 34 42

planar recording it is not fair to compare directly these intersection numbers. Instead we
will extrapolate these data on spheres with center the interneuron position and radius
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the cutoff radius Rn, assuming constant pyramidal neuron density within Rn.
The way this extrapolation is done is the following: First two interneurons i, j are

selected. With the interneuron positions as pathway centers, the area of the intersection,
Aij , of the circles of radius Rn that is within our recording area, is marked. The pathway
intersection neurons that are within Aij are counted. This count is a number less than
or equal to the intersection number in Table 1. This number is associated to the volume
Vij = Aij ∗ dt of the thich slice. Then, by proportionality, we extrapolate this number
to the overlap volume of the two spheres of radius Rn. The results of this extrapolation
are given in Table 2. The diagonal elements of Table 2 are the extrapolated neuron
numbers of each pathway on the sphere of radius Rn, and the last column is the number
of pyramidal neurons that are in our sphere, no matter whether they belong to the
corresponding pathway or not.

Table 2: Interneuron Pathway Rn Projected Overlap Data

Int. No. 1 2 3 4 5 Nn

1 1972 642 267 468 178 3694
2 642 2014 657 756 365 3842
3 267 657 1653 1359 506 3202
4 468 756 1359 2274 714 3282
5 178 365 506 714 1188 3593

Next we examine whether the extrapolated intersection numbers nij are compatible
with the definite response-non interference condition (19). Hence we plot the LHS of
(19) for every pair of pathways (interneurons) and we check whether this is greater
or not than our confidence limit threshold which for confidence limit ε = 0.01 is 2.33,
forε = 0.05 is 1.65 and for ε = 0.1 is 1.29. This is displayed in fig.4 Note that the choice
of the firing probabilities p = 0.5, p0 = 0.4 is close to a worst case senario for probability
resolution dp = 0.1, as can be seen from fig.2

Similar graphs to fig. 4 have been constructed for three more datasets from [5]
corresponding to three different adult mice. The results are displayed in fig. 5. Again
most of the pairs of pathways satisfy the non-interference and definite response condition
(19) at the ε = 0.05 confidence limit.

8 Conclusion

Although in this work we have made a number of simplifications there are certain con-
clusions that can be drawn. The most important simplifications we have made are the
following: a) Definitive information is carried by pathways that either are active or in-
active, according to the presence of a signal (maybe object) or not. These we will call
bimodal pathways. This is a strong assumption since there is also analog information
that is encoded in the brain, like for example orientation or light intensity. However,
such bimodal pathways seem to be well fitted for object recognition, especially parallel
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Figure 4: The LHS of (19) is plotted for every pathway (interneuron) pair. The value of
this LHS should be above the cutoff line for every pair of pathways to avoid interference.
The three cutoff lines correspond to the indicated confidence limits. Interneuron pair
(3,4) appears to have interference. Note that the two interneurons are also very close
together.

(pop-up) object recognition. b) All pathways have equal size. We make this assumption
to avoid complications that would arise from a distribution in pathway size. We hope
that this assumption will not make us miss any important features of the pathway as-
sembly. c) Neurons are randomly placed in the physical region where the pathway lies.
This is supported by physiologigal data once we stay within a particular layer and region.
However even for many-layer regions, horizontally randomness is maintained. d) The
response properties of each neuron are the same for all neurons in a given pathway, are
probabilistic and are signal dependent. Indeed, neurons in mice V1 behave stochastically.
Even when a neuron responds almost definitely to a given orientation, which is unlikely
unless the signal is very strong, the same neuron will respond with high probability to
a nearby orientation, hence it is difficult to tell the orientation presented to the mouse.
Again, it is evident that in real mice not all neurons have the same response properties,
however we chose to make this assumption for the sake of simplicity. e) The neuron
assembly that eventually reads the pathway information has the ability to adjust the
threshold imposed on the pathway, so as to achieve maximal discriminability of signals.

The conclusions drawn are the following: a) Information capacity of the neuron
assembly is severely limited if the pathways are dense. Hence it is not favored to have
pathways that include all neurons within a region around the pathway center. The
reason for this is that pathways cannot come close together without causing confusion,
limiting in this way the number of pathways in the neuron assembly. Maximization of
the information capacity in this case forces the pathways to maintain a lattice geometric
structure which is not observed in mice V1. This pathway assembly is said to be in the
ordered phase. On the contrary, dilute pathways allow random placement of pathway
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Figure 5: The LHS of (19) is plotted for every pathway (interneuron) pair for three more
datasets corresponding to different mice. The results are not very different .

centers in the neuron assembly region, without severely limiting the information capacity.
This has the advantage that no complicated organization of pathways is needed in space,
allowing pretty much pathway formation without worrying about its placement in space.
This pathway assembly is said to be in the disordered phase. b) For a pathway assembly
that is in the ordered phase and only pairwise overlaps cause confusion, the number of
pathways that can be fitted in an N-neuron assembly increases linearly in N. This linear
behavior changes in the random selection model to a power law behavior Nm0 where
m0 is the maximum allowed overlap between two pathways. However, in the random
selection model locality is lost, since the pathways are formed by the random selection
of neurons from the whole neuron assembly. A hybrid model that maintains locality of
pathways and allowes more dilute pathways is the sharp cutoff constant density model.
Once the density is low enaugh, the pathway system finds itself in the disordered phase.
In this phase, although the number of pathways increases linearly in N, the number
of pathways increases exponentially in m0, allowing a huge number of non-interfering
pathways to coexist. c) A behaviour similar to the one in the sharp cutoff constant
density model is expected to hold for the distance related selection model (see Appendix),
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where the probability that a neuron belongs to a pathway depends on the distance from
the pathway center. If this probability is small enaugh to cause dilute pathways then
the system is expected to come to the disordered phase where the number of pathways
increases exponentially in the allowed overlap m0.

One important remark is due. Although the information capacity increases drasti-
cally in the disordered phase, the control and the adressibility of this information can
be problematic. Let us make the assumption, for example, that there is a direct control
on pathways by interneurons. The number of interneurons is much smaller than the
number of neurons N, hence this limits probably too deverely the information capacity.
Nevertheless, there should be some direct control over the pathways. If a human or
mouse sees two objects and only one is relevant then the other has to fade out quickly
and selectively from memory. Hence there must be a mechanism to adress the irrelevant
object. Furthermore if one has to recall an object from memory, one has to find a way
to activate the relevant pathway. In this work we do not attempt to answer this rather
important question of pathway adressing. It seems likely however that there is interneu-
ron control not over single pathways but rather over specific root pathways that control
whole threads of pathways. We hope to adress this question in future work.

Finally, under the assumption that interneurons are directly connected to pathways
in mice, we analyze real mice data. Here the assumption is made that the pathway
center is the interneuron position. The group of neurons that belong to the interneuron
controlled pathway is determined by the functional connectivity of the interneuron to
the field of view neurons. Once the interneuron pathways are determined their overlaps
are extrapolated from the field of view assuming the sharp cutoff constant density model.
The signal presented to the mice consists of 12 orientation moving gratings. Since the
probability of firing difference in neurons among consecutive orientations is p − p0 ≈
0.1, we examined whether under this response probability difference the pathways we
identified confused each other. The answer is that they do not, except in one pair of
pathways where the interneurons happen to be unusually close together.

9 Appendix: Distance Related Selection Model

9.1 2D Case

Lets now suppose that there is a probability P (|r − rA|) for a neuron at position r to
belong to the pathway A, whose center is located at rA. Still each neuron will be assumed
to have uniform probability to be anywhere in the area considered. Since in this model
the number of neurons in a pathway can vary, we will normalize the number of such
neurons by the expectation value

N

Area

∫
P (|r|)d2r = n. (54)

This gives us that the expected value of the distance of the neurons in a pathway is
given by Er = n

2π
Area
N . The probability that a neuron belongs to both pathways A and
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B is given by

pb =
1

Area

∫
P (|r− rA|)P (|r− rB|)d2r. (55)

This probability is naturally expressed in elliptical coordinates since it involves distance
from two poles. If we set the distance of the two pathway centers |rA − rB| = 2a then
(55) becomes

pb =
a2

Area

∫ 2π

0

∫ ∞
0

P (a coshu+a cos v)P (a coshu−a cos v)(sinh2 u+ sin2 v)dudv (56)

The probability of m neuron overlap is given by

P (O = m) =

(
N

m

)
pmb q

N−m
b (57)

where qb = 1− pb.
The probability of interference of two pathways is given by

Pm0(|rA − rB|) = Pm0(2a) =
∑

m≥m0

P (O = m) ≈ 1√
2π

∫ ∞
(m0−Npb)√

Npbqb

e−z
2/2dz (58)

where m0 is really determined by the neuron probability of firing given pathway signal
and the probability of firing spontaneously for the two pathways. Here, for the last
equality we have used the normal approximation of the binomial distribution.

In the 3D case the pathways are assumed to have spherical shape with a neuron
density that varies with distance from the center. Since the probability that a neuron
is located in d3r is d3r/V , we have that the probability that a given neuron belongs to
pathway A is 1

V

∫
P (|r− rA|)d3r. This leads to the neuron number expectation value

normalization
N

V

∫
P (|r|)d3r = n (59)

As in the 2D case, the probability for a neuron to belong to both pathways A, located
at rA, and pathway B located at rB is given by

pb =
1

V

∫
P (|r− rA|)P (|r− rb|)d3r (60)

This overlap probability simplifies again if we use elliptical coordinates on a plane
through the two pathway centers and then we rotate on the axes of the two pathway
centers. In this way we get

pb =
a2

V

∫ 2π

0

∫ ∞
0

P (a coshu+ a cos v)P (a coshu− a cos v)(sinh2 u+ sin2 v)2π|y|dudv

=
2πa3

V

∫ 2π

0

∫ ∞
0

P (a coshu+ a cos v)P (a coshu− a cos v)(sinh2 u+ sin2 v) sinhu sin vdudv

=
4πa3

V

∫ 1

−1

∫ ∞
1

P (a(w1 + w2))P (a(w1 − w2))(w
2
1 − w2

2)dw1dw2, (61)
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where y in the above formula stands for the cartesian y coordinate and w1 = coshu
while w2 = cos v. Again the probability of interference Pm0(|rA − rB|) of two pathways
is given in terms of this 3D overlap probability pb by (58).

As in the sharp cutoff constant density model, we expect that we have two phases
assuming maximum pathway number. One is the ordered phase where pathway centers
are not allowed to overlap, since in this phase two overlapping pathways share enaugh
neurons to cause interference in their operation. This phase occures when the pathways
are ’dense’. The other phase is the disordered phase. In this case even when the pathway
centers overlap, the number of common neurons in the two pathways is small and it is
not sufficient to cause confusion. In this case the lattice structure is difficult to maintain,
since two pathways can, on their own, come as close as necessary. In this phase, pathways
can be randomly placed on the plane or 3D space up to a certain density of pathways
that makes confusion likely. This second phase occures when pathways are ’dilute’ in the
sense that within a neighbourhood of the pathway center a small fraction of the neurons
belong to the pathway. As has become clear from the sharp cutoff constant density
model, in this phase the information capacity is very large, increasing exponentially in
the number of overlapping neurons.
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